Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(a, x) → f(b, f(c, x))
f(a, f(b, x)) → f(b, f(a, x))
f(d, f(c, x)) → f(d, f(a, x))
f(a, f(c, x)) → f(c, f(a, x))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(a, x) → f(b, f(c, x))
f(a, f(b, x)) → f(b, f(a, x))
f(d, f(c, x)) → f(d, f(a, x))
f(a, f(c, x)) → f(c, f(a, x))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
F(a, f(b, x)) → F(b, f(a, x))
F(a, x) → F(b, f(c, x))
F(d, f(c, x)) → F(a, x)
F(a, f(c, x)) → F(c, f(a, x))
F(a, x) → F(c, x)
F(d, f(c, x)) → F(d, f(a, x))
F(a, f(b, x)) → F(a, x)
F(a, f(c, x)) → F(a, x)
The TRS R consists of the following rules:
f(a, x) → f(b, f(c, x))
f(a, f(b, x)) → f(b, f(a, x))
f(d, f(c, x)) → f(d, f(a, x))
f(a, f(c, x)) → f(c, f(a, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
F(a, f(b, x)) → F(b, f(a, x))
F(a, x) → F(b, f(c, x))
F(d, f(c, x)) → F(a, x)
F(a, f(c, x)) → F(c, f(a, x))
F(a, x) → F(c, x)
F(d, f(c, x)) → F(d, f(a, x))
F(a, f(b, x)) → F(a, x)
F(a, f(c, x)) → F(a, x)
The TRS R consists of the following rules:
f(a, x) → f(b, f(c, x))
f(a, f(b, x)) → f(b, f(a, x))
f(d, f(c, x)) → f(d, f(a, x))
f(a, f(c, x)) → f(c, f(a, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 5 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(a, f(b, x)) → F(a, x)
F(a, f(c, x)) → F(a, x)
The TRS R consists of the following rules:
f(a, x) → f(b, f(c, x))
f(a, f(b, x)) → f(b, f(a, x))
f(d, f(c, x)) → f(d, f(a, x))
f(a, f(c, x)) → f(c, f(a, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ ATransformationProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(a, f(b, x)) → F(a, x)
F(a, f(c, x)) → F(a, x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have applied the A-Transformation [17] to get from an applicative problem to a standard problem.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ ATransformationProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
a(b(x)) → a(x)
a(c(x)) → a(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- a(b(x)) → a(x)
The graph contains the following edges 1 > 1
- a(c(x)) → a(x)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
F(d, f(c, x)) → F(d, f(a, x))
The TRS R consists of the following rules:
f(a, x) → f(b, f(c, x))
f(a, f(b, x)) → f(b, f(a, x))
f(d, f(c, x)) → f(d, f(a, x))
f(a, f(c, x)) → f(c, f(a, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
Q DP problem:
The TRS P consists of the following rules:
F(d, f(c, x)) → F(d, f(a, x))
The TRS R consists of the following rules:
f(a, x) → f(b, f(c, x))
f(a, f(b, x)) → f(b, f(a, x))
f(a, f(c, x)) → f(c, f(a, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
First, we A-transformed [17] the QDP-Problem.
Then we obtain the following A-transformed DP problem.
The pairs P are:
d(c(x)) → d(a(x))
and the Q and R are:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → b(c(x))
a(b(x)) → b(a(x))
a(c(x)) → c(a(x))
Q is empty.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(a(x1)) = 1 + x1
POL(b(x1)) = x1
POL(c(x1)) = 1 + x1
POL(d(x1)) = 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
d(c(x)) → d(a(x))
The TRS R consists of the following rules:
a(x) → b(c(x))
a(b(x)) → b(a(x))
a(c(x)) → c(a(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
d(c(x)) → d(a(x))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
a(c(x)) → c(a(x))
a(x) → b(c(x))
a(b(x)) → b(a(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
a(x) → b(c(x))
a(b(x)) → b(a(x))
a(c(x)) → c(a(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.